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ABSTRACT 

Let {(Xi, Z~)} be an i.i.d, sequence of random pairs in a finite set ~/" X ~r; we 
will call it a discrete memoryless stationary correlated (DMSC) source with 
generic distribution dist(Xl, Z0. Two DMSC sources ((Xz, Zi)} and {(X~, Z[)} 
are called asymptotically isomorphic in the weak sense if for every e > 0 and 
sufficiently large n, there exists a joint distribution dist(X n, Z n, X 'n, Z '~) of 
n-length blocks of the two sources such that 

1 1 
-H(XnlX'~)<e, -H(Z"lZ'")<e, 
n n 

1 1 
-H(X'" [ x')<~, -H(Z'" [ Z")< ~. 
n n 

For single sources of equal entropy, McMillan's theorem implies asymptotic 
isomorphy in the sense suggested by this definition. For correlated sources, 
however, no nontrivial cases of weak asymptotic isomorphy are known. We 
show that some spectral properties of the generic distributions are invariant 
for weak asymptotic isomorphy, and these properties wholly determine the 
generic distribution in many cases. 

§1. Introduction 

Let (X, Z) be a random pair with values in the set ~/" × ~r (~/', ~ finite sets). 
Denote by P and R the distributions of X resp. Z, and by V and V* the 
conditional distributions of Z given X resp. X given Z: 

P = dist X, R = dist Z, 

V=(V(z [ x ) : ( x , z ) E ~ X  ~r)=dis t  (Z [X), 

V* = (V*(x [ z): (x, z)E ~/" × ~r) = dist (X [Z). 

For the matrix V, the rows are indexed by the elements o f~ ,  and for V*, by the 
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elements of ~ .  Let -Y(X) and .Y(Z) be the real L2-spaces over the (finite) 
probability spaces (~r, p) resp. ( ~ ,  R). The transition matrices V and V* 
define Markov operators . ~ ( Z ) ~  ~ (X)  resp..Y(X)---, .~(Z), by setting 

Vg(x) = V(z [x)g(z), 
z 

V*f(z) = 2 V*(x ]z)f(x), fe , .~(X).  
x 

It is easy to see that the operators Vand V* are adjoint to each other. Thus the 
Markov operators defined by the matrix products 

W = VV* : U'(X) --- ~(X),  

r~ = v . v :  .~(z)--, ~ ( Z )  

are self-adjoint and non-negative definite. I.e. 

(Wf, g )e=( f ,  Wg)p and (Wf, f)e>=O, f , g ~ ( X ) ,  

and 

(Wf, g)R=(f ,  ff'g), and (lg/f,f)R_->O, f , g ~ . ~ ( Z ) ,  

where, e.g., the index P indicates that the scalar product is taken with respect to 
P. It is clear that the functions ~ 1 on ~r resp. ~ are eigenfunctions of Wresp. 
W, with eigenvalue 1 which is the largest eigenvalue of W and I~, so the 
spectra of W and lg / lie in the interval [0, 1 ]. 

Define two stationary Markov chains {X(m)},~.0 and {Z(m)}g_0 with 
dist X(O) = P, dist Z(O) = R, and transition matrices W and l,P, respectively. 
Denote H(P) or H(X) the Shannon entropy of the random variable X, and for 
a random pair (X, Y), denote I(X^Y) the mutual information I (XAY)= 
H(X) + H(Y) - H(X, Y). 

With this notation, put 

and 

Im= I(X(O)AX(m)), [,,, = I(Z(O)AZ(m)), 

where (U, X(0), X(1) . . . .  ) is a Markov chain and dist(U, X(0)) = dist(Z, X). 
Our goal is to show that the numbers H(P), H(R), (In}, {/,,}, {/,,} reveal 

much about the structure of the joint distribution dist(X, Z), and in fact, 
wholly determine it in many cases. The motivation for studying these numbers 

[,, = I(UAX(m)) (m = 1, 2 , . . .  ), 
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is the fact that they are invariant for weak asymptotic isomorphy of discrete 
memoryless stationary correlated ( = DMSC) sources (cf.) Lemma 4.1 in [7]). 

DEFINITION. The DMSC sources {(Xi, Zi)}, ((X;, Z;)} are asymptotically 
isomorphic in the weak sense if for any e > 0 and sufficiently large n, there 
exists a joint  distribution t dist(X", X'", Z", Z '")  satisfying 

1 Z'")  1H(X" -H(Z" I 
n n 

1 !nix'" I x")<e, I z")<e. 
n n 

For single sources {Xi}, {X;} of the same entropy, McMillan's theorem 
implies that they are asymptotically isomorphic in the sense suggested by the 
above definition. 

For correlated sources, the situation is quite different. No non-trivial cases 
of weak asymptotic isomorphy are known Moreover, adopting a somewhat 
more restrictive definition of asymptotic isomorphy, it turns out that DMSC 
sources cannot be asymptotically isomorphic in a non-trivial way. (See [8].) 
This suggests the conjecture that DMSC sources cannot be asymptotically 
isomorphic even in the weak sense, unless their generic distributions (i.e. 
dist(X~, Zl) and dist(X'~, Z'0 for the s o u r c e s  ((Xi, Zi)), (X;, Z~))) are so. 

Here we will show that some spectral properties of the matrix W are 
determined by H(P) and the sequence (I,, }, and hence invariant for weak 
asymptotic isomorphy. Moreover, for a class of  joint distributions, we will 
prove that if a joint distribution in this class has the same numbers H(P), 
H(R), {Ira}, (ira }, {/m} as another joint distribution (not necessarily in this 
class) then the two joint distributions are isomorphic in the following sense: 

DEFINITION. Let Q and Q' be joint distributions on the sets ~/" × ~e resp. 
~ '  × Er' (Sf, &r, ~ , ,  Lr' are finite sets). Q and Q' are isomorphic if there exist 
bijections tr : ~/" -~ ~/", z : &r ~ &r, such that 

Q(x, z) = Q'(o(x), r(x)) for any (x, z )E~r  × ~ .  

The study of the sequence ([,, } for dealing with a related problem was 
initiated by Thouvenot  [10]. He considered DMSC sources that are full- 
entropy factors of some given DMSC source. Our Theorem 2 is a substantial 

* X" denotes  (XI . . . . .  X.). 
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generalization of Thouvenot 's  Proposition 1 in [10]. (The proof  of  his Proposi- 
tion, however, contains a gap.) Let us note that we were not able to fully 
generalize Thouvenot 's  result (implied by Lemma 2 [l 0]) on the eigenvalues, 
to the case of weak asymptotic isomorphy. 

Throughout the paper, we will consider pairs (X, Z) satisfying the following 

two conditions: 
(i) 1 is a simple eigenvalue of W; 
(ii) (X, Z) is non-singularly dependent (i.e. neither V nor V* contain 

identical rows). 
These assumptions are justified by 

LEMMA 0 (proved in the Appendix). Properties (i) and (ii) are invariantfor 
weak asymptotic isomorphy. 

It is shown in [6] that property (ii) is equivalent to the condition that the 
eigenfunctions of W resp. I~ pertaining to positive eigenvalues separate ~r 
resp. £r. 

§2. Statement of the results 

Denote 21 . . . .  ,2, the different eigenvalues of W lying in the interval (0, 1), 
and let A be the set of  those 2j E A that admit  no representation of the form 

2j = (I 27,', aji >_- 0 rationals, Y~ Otji >-~ 2" 
i = l  i 

Note that maxi 2, E A, so A ~ ~ .  

THEOREM 1. The set A and the multiplicities of 2~ E A are determined by 
the sequence {Ira ). 

DEFINITION. The positive n u m b e r s / t l , . . . ,  as are called log-independent if 
for integers nl . . . .  , ns 

I~I /~, = i imples ni = 0 for all i. 
i=1 

NOTATION. Speaking of functions on Y" and ~r, orthogonality will be 
understood with respect to P resp. R. Denote (u 0 )j = 1.....~, a complete orthonor- 
mal set of 2~-eigenfunctions of W (i -- 1 , . . . ,  r) and put 

1 
~o = ~ V*uo ; 
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it is easy to see (or cf. [9, Translator's remarks to Chap. 9] that {a0}j_~, ,s, is a 
complete orthonormal set of 2~-eigenfunctions of W. Denote for (x, y )E  ~r2 

Fx,(C) = 1+ ~ C, ~, uo(x)uo~y), 
i=1 j = l  

for (x, z ) E ~  X ~ ,  

and for (z, t )E  &r2, 

Denote 

= ( ~ , . . . ,  ~ ) ~ C ' ;  

l~xz(~) = 1 + ~ ~i Y~ Uo(X)fto(z); 
i= t  .i 

Pzt(~) ~- 1 + ~ ~i £ flij(Z)l~ij(t)" 
i=1 j 

V *~m) = V * W "  -- dist(X(m) ] U). 

The meaning of the functions Fxv, Fx~, Pz~ is clarified by 

LEMMA 1. (i) V*(m)(X [z) = P ( x ) l ~ x z ( ~ . m + l l 2 ) ,  ( X ,  Z ) E , ~  e X ,,~e, where 2 q = 

( ~  . . . .  , a ,~);  

(ii) W"(y Ix) - P(y)Fxy(2"), (x, y ) ~ 2 ;  

(iii) [m= I ( U ^  X ( m ) )  

= y~ p ( x ) R ( z ) p x z ( 2 m  + ,/2)log pxz(J.m + ,/2) 
x~z 

(2.1) = ~. ( -  1)s Y~ 21, ~m+'m. • .2/,t'~*'m • 
• -2 s ( s -  1) i l + ' ' ' + i r - - '  

', 

(iv) Im= I(X(O) A X ( m ) )  

= £ P ( x ) P l y ) F x y ( 2 " ) l o g  r~y(2")  
X,y 

(2.2) = ~ ( -  1)' Y~ 2~,"...2~," • 
s-2 s (s  -- 1) J,+...+i,=s 

• Y , P ( x ) P ( y )  Y, U l j ( X ) U l j  " ' "  U r j ( X ) U r j  • 
xy j 
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If F((), ( ~ C', is a linear function in r variables then define the sets A(F), 
B(F), C(F) by 

A(F) = ((x, y )E~2  : Fxy-=F}, 

B(F) = {(z, t )E ~2 :/e~ = F } ,  

C(F) = {(x, z )E .~  × ,Z:P•  ~ r ) .  

Let W be non-singular, and the eigenvalues 21 . . . . .  2, log- THEOREM 2. 
independent. I f  for some dist(X', Z') 

(2.5) I,,, = I~,, /,,, =/'~,, /,,, = [~,, 

and 

m = l , 2  . . . .  , 

(2.6) H(P) = H(P'), H(R) = H(R'), 

then W and W' are spectrally equivalent. Moreover, for any linear function 
F(O, ~ EC',  

(2.7) (P × P)(A(F)) = (P' X P')(A '(F)), 

(2.8) (R X R )(B(F)) = (R' × R')(B'(F)), 

(2.9) (P × R )( C(F)) = (P' × R')( C'(F)), 

where, e.g., P X R denotes the product measure on ~ X ~ with marginals P 
and R. 

COROLLARY. Pr{(X(m), U)EC(F)}--Pr((X'(m),  U')EC'(F)} for all F 
and m, and, in particular, 

Pr{(X, Z)EC(F))  = Pr{(X', Z')EC'(F)}, allF. 

Having only used the invariants {I,,}, {/,,}, ([,,), H(P), H(R), we cannot 
hope for more than Theorem 2. Indeed (2.7)-(2.9) imply (2.5), and for W, W' 
non-singular, also (2.6). 

The next two theorems say that, under some additional conditions on 
dist(X, Z), (2.6)-(2.9) imply full isomorphy of dist(X, Z) and dist(X', Z'). 
These additional conditions cannot hold ifdist(X, Z) has non-trivial automor- 
phisms, but, on the other hand, Theorem 4 holds for "almost all" joint 
distributions dist(X, Z), and Theorem 3 holds for "almost all" dist(X, Z) such 
that X and Z have equal ranges. 

Denote by {Ca . . . .  , Ct} the partition o f ~  X ~ into the non-void sets C(F). 
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THEOREM 3. Assume that (i) W and W are non-singular, (ii) the eigen- 

values 21 . . . . .  2r are log-independent, (iii) 

Fxx ~ F~x for x m x and P= ~ F~ for z v~ ~, 

and (iv) there is no partition {D1 . . . . .  Dr} o f  ~5× ~Z, different f rom 

( C1, . . . , Ct } and such that 

(P X R)(D,) = (P X R)(Ci), i = 1 . . . .  , l. 

I f  for  some (X', Z')  the equalities (2.5)-(2.6) hoM then dist(X, Z)  and 

dist(X', Z')  are isomorphic. 

I f  W has simple spectrum then denote by ui the 2i-eigenfunction of  W, and 

1 
a~ = -~ i  V*ui. 

Let (el . . . . .  er) be a sequence of  - l 's and l's. By dist(elUlal . . . . .  e~urft~) we 

shall mean the joint  distribution of  the products e~. u,. ~ ,  assuming 

dist(ul . . . .  , Ur) = dist(Ul(X) . . . . .  u,(X)), 

dist(al . . . . .  a~) = d i s t ( a l ( Z ) , . . . ,  a,(Z)), 

and ( u i , . . . ,  u~) independent  of  (al . . . . .  a~). 

THEOREM 4. Let W be non-singular, and the eigenvalues 21 . . . . .  2~ log- 

independent and simple. Assume further that for any (el . . . . .  er)~ ( - 1, 1 }~, 
the relation 

(2.10) dist(ulal . . . . .  utah) = dist(elUlat . . . .  , e~Ura~) 

implies at least one o f  the relations 

(2.11) d i s t ( u l , . . . ,  u~) = dist(elu~ . . . . .  e~u,), 

(2.12) dist(a~ . . . . .  a~) = dist(elat . . . .  , e~a~). 

I f  for some dist(X', Z')  the equalities (2.5)-(2.6) hold then dist(X, Z) and 

dist(X'~ Z')  are isomorphic. 

COROLLARY. Assume that ~ = ~ ,  P = R ,  V is non-singular and selfi 
adjoint with respect to P,* and the eigenvalues 21 . . . . .  2~ are log-independent 

* I.e. P(x)V(z Ix )  = P(z)V(x ] z), (x, z ) @ ~  2. 
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and simple. I f  for some dist(X', Z') the equalities (2.5)-(2.6) hold then 
dist(X, Z) and dist(X', Z') are isomorphic. 

Although Theorems 3 and 4 may not be the strongest possible, full isomor- 
phy of dist(X, Z), dist(X', Z')  does not follow in general from (2.5)-(2.6). This 
will be demonstrated by joint distributions obtained from adjacency matrices 
of strongly regular graphs. 

Let Y" = ~r, p uniform on Y', and V a symmetric transition matrix on y.2. 
Denote by (Y(0), Y(1) . . . .  ) a stationary Markov chain with dist Y(0) = P and 
transition matrix V. Put 

Jm = I(Y(O)^ Y(m)). 

PROPOSITION (proved in the Appendix). The sequence {J,, } is not a full 
invariant for the isomorphy of  symmetric joint distributions with a given 
alphabet size and uniform marginals. 

§3. Proof of Theorem 1 

PROOF OF LEMMA 1. For z and m fixed, denote 

v*(m)(x [ Z )  
f~(x) = 1. 

/ '(x) 

Expand fz in the system {u/j}/=l,...,rj=~,...,s, tO {u0j} (where 
complete orthonormal set of 0-eigenfunctions of  W): 

£(x)  = Y~ y~(i,j)uo(x ) 
ij  

with 

whence 

{u0j} denotes a 

Yz(i,j) = E P(x)f~(x)uo(x) 
x 

= E [z)uo(x) 
x 

~_ ~ ' l  + l /2~/ j (Z)  ' 

W*(")(x [ z) = P(x)/Oxz(2 m + ,a), 

proving (i). Applying (i) for m -- 0 and with W m in the role of  V*, we get (ii). 
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The first equality in (iii) follows from (i) and the definition of  mutual  
information.  To obtain the second equality, use the power series o f  the 

function (1 + 0)log(1 + 0), 0 E C, around 0 = 0. (iv) is proved similarly. [] 

Denote  hi, n: . . . .  the different products 21,. • • 2~,; then the expansion (2.2) 

can be written as 

(3.1) Im=2Ckn~. 
k 

L~MMA 2. (i) For 2j~A, the coefficient of 2 TM in (3.1) is half the multipli- 
city of 2j. 

(ii) For 2j ~ A, 

(3.2) 2j = l-I 2~ ~', aj~ _-> 0 rationals, ~ aj~ >= ~. 
,~EA i 

PROOF. (i) follows from the fact that the coefficients of  the terms 2 m and 
2r'2j m (i ÷ j )  in (2.2) are 0. 

To prove (ii), assume A = {21 . . . . .  21). F o r j  >_- l + 1 we have 

(3.3) 2j = 1-[ 2~,, aj~ >_- 0 rationals, ~ aj~ _-> ~. 
i i 

It is clear that we must  have a~ < l, so (3.3) can be brought to the form 

(3.4) 2i = 1"I 2/p~', ]/j~ > 0 rationals, fl~ = 0, 
i 

i 

Substituting (3.4), taken with j = r, into (3.4), taken with j = r - l, we get 

( 3 . 5 )  ~r - -  I -~- 2ff~-]"flr ' - t  1- I 2 /~ ' - ' ' ' f l ' a+~ ' - ' a  • 
iNr--2 

(3.4) implies 

i<r-2 

~- # r -  l,r 2 #r,i "Jl- 2 Pr -  l,i ~ 2 Pr -  l,i ~ ~ • 
i i<r-2 i 

Since fl,_~., .fl,.,_m must be < 1, (3.5) can be brought to the form 

;t~-l -- 1-I 2['-'~, ~',-1,~ > 0 rationals, 7r-l,r-I = O, 
i<r--I 

2y,-,., >--t. 
i 
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Similarly, for any 1 + 1 < j < r - 1, 

;tj = I'I ~{", ~'j~ > 0 rationals, 7j~ = 0, ~ 7j~ >-- ~. 
i<r- I  i 

I terat ing this step, we get the expressions (3.2) f o r j  > l + 1. [] 

PROOF OF THEOREM 1. Assume Im= I'm for some dist(X',  Z') .  Then  the 
series (3.1) for dist(X, Z)  and dist(X',  Z ' )  coincide. Denote  g ~ , . . .  ,/A the 
different eigenvalues of  W' in (0, 1). 

We claim that  2j ~ A\ A' would imply 

(3.6) 2j = I'[ #T j', ~'j~ > 0 rationals, Y, 7j, > ]. 
i i 

Indeed,  for ~j~{] '~l  . . . . .  gt} \A '  this follows f rom the defini t ion of  A'. For  
2j E A\ {g~ . . . . .  gt }, the coefficient of  2~ m in (2.2) is ~ 0, so 2~ mus t  be of  the 

form 1"I~/t,~,,, pj~ >_- 0 integers, and  since 2j ~ (#l . . . .  , gt }, we mus t  have Z; Pit >= 3 
which implies (3.6). 

On the other  hand,  it easily follows f rom the previous s tatement ,  and 
/_,emma 2, that/zi (i = 1 , . . . ,  t) can be wri t ten as 

(3.7) /z~ = 1-I 2k 6~, t~k > 0 rationals, Y~ ~k > 1. 
k k 

Subst i tut ing (3.7) into (3.6), we get 

- -  I I  
k 

S i n c e  2j ~ A ,  we must  h a v e  ~i,k ~j#~ik < ~. B u t  ~i,k ~fl(~ik ~-~ ~"i ~ji ~-~ ], a c o n t r a d i c -  

t i o n  proving A --- A'. The  s ta tement  on the multiplici t ies is obvious,  r'l 

~4. Proof of Theorem 2 

We shall need the following lemmas.  

LEMMA 3. Let ~(() = ~ ( ( ~ , . . . ,  (,) be a complex function analytic in a 
region Z[ I ~1 < tL Let the numbers 0 < 2t, 22 . . . .  ,2r < 1 be log-independent. 

i f  

. . . , 4 ; )  = o 

for n large enough then q~(() = 0 in Z[ I ~i[ < ti. 
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P R O O F .  

the origin 

We may assume Y 2~ -< ~. Consider the power series of  ~0 around 

oo 

(4.1) ~o(~)= ~ a(l~ . . . .  , l~)~,.. .~[,.  
lb,,, ,l ,  = 0 

We have 

(4.2) 0 = ~0(2~ . . . . .  2~") = Y~ a(l, . . . . .  lr)21'"'" "2~: 
ll,...,/, 

for n large enough. By log-independence, the products  21 . . . .  2[, are all distinct. 

Denote  h,  v2 . . . .  these products  in decreasing order, and put bi -- a(l~ . . . . .  lr) 
if  v, = 2( . . . .  2r t'. Since the series (4.1) is absolutely convergent in X I~il < ~, 

(4.2) may be written as 

(4.3) ~ byf = 0 for n large enough. 
i 

It is enough to prove b~ = 0 for all i. 

Assume b0 = bj . . . . .  bq_ 1 = O, bq # 0 for some q > 0. Then bp ~ 0 for 

some p > q; let p denote the smallest such integer. By (4.3), 

[ ( ] 
whence 

Ibq[ ~-~(llP)n x [bp+jl (VP+~Jln~-~(Vpln l-- X [bp+j[Vp+j • 
\lIq/ j = 0  \ Vp ] \Vq/ Vpj~O 

Since Vp/Vq < 1 and Xj I bp +j I vp +j < ~ ,  this implies bq = 0. 

LEMMA 4. W is non-singular i f f  for any x, y ~ ~2 

[] 

(4.4) 1 + ~ ~. uo(x)uij(y) - t~(xy)  
i=1 j=l P(x) 

0, x ~ y, 
with d(x,  y)  = 1, x = y. 

PROOF. Let {Uoj)j=I,...,So denote a (possibly void) complete  or thonormal  

system of  O-eigenfunctions of  W. Then the functions = 1  and 

{u0(x)}i =0,...,r j = ~,...,s, constitute a complete  or thonormal  system with respect to 

P.  It is easy to see that this implies 

1 + Y, ~ uij(x)uo(y) =~(xy----), a l lx ,  y. 
i=0 j=l P(x) 
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Thus (4.4) is equivalent to 

U o j ( X ) U o j ( Y )  = O,  all x, y. [] 
j = l  

COROLLARY. I f  W is non-singular then Fxy ~ 1. 

PROOF. ~ ( x , y ) / P ( x )  4= 1 for anyx ,  y, so Fxy(1, . . . ,  1) ~ 1. [] 

PROOF OF THEOREM 2. Denote #1 . . . .  , #t the different eigenvalues of W'  

in (0, 1). By Theorem 1, we may assume #~ = 2~, i -5 r. By Lemma 2, there exist 

a natural s and integers a;~, r < j  < t, 1 < i _-< r, such that for v~ = 2~/~, 

(4.5) p j =  fi vFJ,, Y, a jg>s ,  j = r + l , r + 2 , . . . , t .  
i = l  i 

Denote 

Gxy(¢t . . . . .  ~,) = Fxy(¢[ . . . . .  cr~), 

l, . . . . . . . . .  , ~,) = Fx,y, , , (; ,  ~7 '+',,, , ~7 'j , 
1 1 

(4.6) o(¢)  = ~ P(x)P(y)Gxy(~) log  Gxy(¢), 
X,y 

0 ' ( ~ )  = ~ P'(x')P'(y')G'~,y,(~)log G~,y,(¢) ( (EC ' ) ,  
X',J 

= . . . .  , = . . . . .  

The functions O, O' are analytical in a neighborhood of O, and so are ~F and "t1'. 
LF and ~P' can be continued to functions analytical in a region obtained by 

removing finitely many half-lines from the complex plane. 

We have 

I n  = O ( V m ) ,  I ; .  = O'(vm), 

so by Lemma 3, O(() = O'((), and, afort ior i ,  

(4.7) ~(~) = V'(~) in a neighborhood of  0. 

In order to prove that W'  is non-singular, let us show first that °d'(~) is 

analytical on the segment 0 _-< ~ < 1. Indeed, W being non-singular, Lemma 4 

implies (4.4). Hence Gxy(~, • . . ,  ~) > 0 for 0 ~ ~ < 1, which implies the analy- 

ticity of  V, and, consequently, of  ~Y', for 0 ~ ~ < 1. This, in turn, implies 
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Gx,r((, • • •, ~) > 0 for (x', y ' ) ~  6f '2 and 0 < ~ < 1, whence G~,,r,(1 . . . . .  1) >_- 0 
for all (x', y'). 

Consider the probability distributions 

Q(x,  y)  = P ( x ) P ( y ) G x y ( I , . . . ,  1), (x, y ) ~  ~2, 

Q'(x' ,  y')  = e ' (x ' )P ' (y ' )Gx ,y , (1 , . . . ,  1), (x', y ' ) E ~  '2. 

By (4.4) 

which implies 

Q(x,  y)  = P(x )3 (x ,  y), 

qJ(1) = H(P),  

whence 

(4.8) tF'(1) = n (P ' ) .  

But both marginals of Q' coincide with P', so (4.8) implies 

Q'(x ' ,  y')  = tS(x'~ y ')P'(x ') ,  

i.e. 

~(x', y ')  
1 + Y~ u ~ ( x ' ) u ~ ( y ' )  - - - ,  

i,j P '(x ' )  

which is equivalent to the non-singularity of  W', by Lemma 4. 
Now, Corollary to Lemma 4 implies that the degree of  G~,r, is > s for all 

(x', y,).t Comparing the singularities of  the functions ~F, qJ', we get from (4.7) 

s = Y. P(x)P(x)deg[Gxy(¢ . . . .  , ()] 
x , y  

X t I I t l - . . = P ( x ) P  (3 ' ) deg [Gx , r , ( ( , . ,  ~)] 
x',y" 

>S,  

whence degG~,, v, = s for all x' ,  y'.  By (4.4) and (4.5), this implies that 

(ul . . . . .  u,} = ( ~ , , . . . ,  ~,}, 

and by Theorem 1, W and W' are spectrally equivalent. 

* In Thouvenot's proof of Proposition 1 [ 10], it is not proved that P~(u) is not a constant, and 
without this, the statement of the Proposition does not follow from (5). 
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Now Im= I~, implies, using Lemma 3, 

P(x)P(y)Fxy(()log Fxy(() = ~ P'(x')P(y')F'x,y,(()log F~,r,((), 
xy x'x'  

and since the polynomials F~y, F~,.r, are linear, (2.7) follows easily. 
Since Wand W' are spectrally equivalent, the positive eigenvalues of IS'and 

I~", and their multiplicities, coincide. (~ 'and/or  IS" may be singular.) Denote 

~(() = Y. R(z)R(t)F~,(f)log F~((), 
Z,I 

and define ~' similarly. Then, by Lemma 3, 

and since F~, and F'z,r are linear, this implies (2.8). (2.9) can be proved 
similarly. The Corollary follows from (2.9) and (i) of Lemma 1. [] 

§5. Proof of Theorems 3 and 4 

PROOF OF THEOREM 3. By (i) and (ii), Theorem 2 applies. By (iii) there 
exist bijections tr : ~t" ~ ~/", z : ~r--, ~ '  satisfying 

e ( x )  -- e ' (a (x ) ) ,  R ( z )  = R ' ( r ( z ) ) ,  

and 

I I 
q(x, . . . .  , x , ) x l , . . . x : ,  l =  I ~, q'(x, . . . .  , x , ) x l , . . . x : ,  

(x,,...,x,) I I (x,,...,x,) 

for any r-tuple o f  integers ( 4 , . . . ,  4) > 0 then there exists a sequence 
(eo, e , , . . . ,  e,)E{ - 1, 1} TM such that for al lx ,  . . . . .  x,,  

q ( x ,  . . . . .  X r )  = ~oq ' (~ , lX ,  . . . .  , e, rX , ) .  

PROOF. Let us prove the statement for r = 1 first. For any i, 

F= = F'~(x),o(x), 

By (iv), (a, z) is an isomorphism. [] 

To prove Theorem 4, we need 

LEMMA 5. Let ~ ,  . . . .  , ~ ,  be finite sets o f  real numbers, and q, q' real 
valued functions on ~ ,  × • • • × ~ , .  I f  
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E ( q ( x )  + q(  -- X ) )X  2i = go(i) Y~ ( q ' ( x )  + q ' (  -- x ) ) x  2i, 
x > 0  x > 0  

Y~ ( q ( x ) -  q(  - x ) ) x  2i+' = O,(i) Y, ( q ' ( x )  - q ' (  - x ) ) x  2i+l, 
x > 0  x > 0  

where Igo(i)l = I gt(i)l = 1. There exists a fixed assignment of do and g~ such 
that for infinitely many i, go(i) = g0 and g~(i) = g~. For this g0 and g~, 

q ( x )  + q (  - x )  = go (q ' ( x )  + q ' (  - x)), 

q ( x )  - q (  - x )  = g l ( q ' ( x )  - q ' (  --  x ) ) ,  

for any x > O. 
It follows that for x > 0 

q ( x )  = ½(go + g l ) q ' ( x )  + ½(go - gOq ' (  - x ) ,  

q (  - x )  = ½(go + gOq ' (  - x )  + ½(go - g O q ' ( x ) ,  

which implies the desired result for r = 1. For r > 1, it follows easily by 
induction. [] 

PROOF OF THEOREM 4. By Theorem 2, W and W' are spectrally equiva- 
lent, and both have simple spectrum. By statement (iv) of Lemma 1, this 
implies 

for any r-tuple of non-negative integers. Since P and P'  are non-negative, 
Lemma 5 implies that, after possibly multiplying some of the functions u; by 

- 1, we shall have 

(5.1) d i s t ( u l , . . . ,  Ur) = dist(ul . . . .  , u;). 

Similarly, 

(5.2) dist(a~ . . . . .  a,) = dist(e~al . . . . .  e~a~) 

for some (ca , . . . ,  er)E ( - 1, 1} r. Moreover, Theorem 2 implies 

(5.3) d is t (u lOt , . . . ,  u,gr) = dist(ulal . . . . .  u'l ). 

(5.1), (5.2) and (5.3) imply (2.10), and hence either (2.1 I) or (2.12). If (2.12) 
holds then (5.2) may be replaced by 
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dist(a~,., a t ) =  " "' . ,  d i s t (u ] , . . . ,  a;). 

Since (X,Z)  and (X ' ,Z ' )  are non-singularly dependent, (u~ . . . .  ,u,), 
(~  . . . . .  tTr), (U'] , . . . ,  U',), (Ul . . . . .  ~;) separate ~ ,  &r, y"  and ~ ' ,  respectively 
(cf. [6]). Now the statement follows from (i) of  Lemma 1. The case when (2.11) 

holds can be settled similarly. 

The Corollary follows from the fact that for V self-adjoint, u; ~ _+ ~;, so 

(2.1 O) implies (2.11). [] 

Appendix 

PROOF OF LEMMA 0. Consider the function* 

Tp, v(t) = min{H(Z [ S)" dist(S, X, Z) satisfies I (S^Z  I X) = O, 

dist g = P, dist(Z ] X) = V, 

H(XIS)>=t ,  ISI ---< IXI + 2} 

(0 <= t <= H(X)). It follows from the results in [1 ] or [11 ] that this function is 

invariant for weak asymptotic isomorphy, as pointed out by G~ics and K6rner 

[5]. 
On the other hand, it is known ([3], Problem 28 of§4, Chapter 3)that 1 is a 

multiple eigenvalue of W if and only if 

Tp, v(t) = H(Z) - H(X) + t for tl <= t <= H(X) (t, < H(X)). 

Moreover, the fact that V has at least two identical rows is equivalent to the 
existence of a function S = ~p(X) satisfying H ( S ) >  0 and I (X^  Z I S ) =  0 
which is obviously equivalent to: 

Te, v(t) = H(Z  [ X) for 0 <= t <= to (to > 0), 

as can be easily seen. [] 

To prove the Proposition, we construct symmetric transition matrices from 

adjacency matrices of strongly regular graphs. 

Let G be an undirected graph with vertex set Y', without loops and multiple 

edges. G is called regular with degree r if every vertex of G is adjacent to r 

vertices. 

* I S I denotes the size of the range of the random variable S. I(S^Z ] X) denotes average 
conditional mutual information. H(X I S) denotes average conditional entropy. 
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DEFINITION (see [4]). G is strongly regular with parameters t, r, e, f 
(e, f >  0 integers) if I~1 --t ,  G is regular with degree r, and its adjacency- 
matrix A satisfies 

(A.1) A 2 - - ( e - J ) A  + f J + ( r - J ) I ,  
where I is the identity matrix, and J is the matrix with all elements equal to 1. 

PROOF OF THE PROPOSITION. Let P be uniform on if', G a strongly regular 
graph on if', and 

V(z I x )  = 1A(x, z). 
r 

V is a symmetric transition matrix. From (A. 1) it follows by induction that 

w m = + rm/, 

where the constants am, tim, 7m are determined by the parameters t, r, e, f.  
Hence H(Y(m) I Y<0)) is determined by the numbers t, r, e,f ,  too. Since there 
exist non-isomorphic strongly regular graphs with the same parameters (see 
[2]), this proves the Proposition. 1"3 
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